Indexed by:
Abstract:
This paper presents a method of depression recognition based on direct measurement of affective disorder. Firstly, visual emotional stimuli are used to obtain eye movement behavior signals and physiological signals directly related to mood. Then, in order to eliminate noise and redundant information and obtain better classification features, statistical methods (FDR corrected t-test) and principal component analysis (PCA) are used to select features of eye movement behavior and physiological signals. Finally, based on feature extraction, we use kernel extreme learning machine (KELM) to recognize depression based on PCA features. The results show that, on the one hand, the classification performance based on the fusion features of eye movement behavior and physiological signals is better than using a single behavior feature and a single physiological feature; on the other hand, compared with previous methods, the proposed method for depression recognition achieves better classification results. This study is of great value for the establishment of an automatic depression diagnosis system for clinical use.
Keyword:
Reprint Author's Address:
Email:
Source :
COMPLEXITY
ISSN: 1076-2787
Year: 2020
Volume: 2020
2 . 3 0 0
JCR@2022
ESI Discipline: MATHEMATICS;
ESI HC Threshold:46
Cited Count:
WoS CC Cited Count: 16
SCOPUS Cited Count: 20
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: