• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Dong (Li, Dong.) (学者:李冬) | Zhao, Shi-Xun (Zhao, Shi-Xun.) | Wang, Jun-An (Wang, Jun-An.) | Zhu, Jin-Feng (Zhu, Jin-Feng.) | Guan, Hong-Wei (Guan, Hong-Wei.) | Zhang, Jie (Zhang, Jie.)

收录:

EI Scopus PKU PubMed CSCD

摘要:

A laboratory-scale completely autotrophic nitrogen removal over nitrite (CANON) process was operated in a municipal wastewater treatment plant (WWTP). Sewage effluent treated by the anaerobic/oxic (A/O) process and was used to operate a WWTP to obtain the initial substance for the start-up of a CANON filter reactor. On the 48th day, the ammonia removal rate was measured at greater than 90% in successive 10 d samples and the nitrogen removal rate was greater than 70%. The CANON filter was successful at start up. From the 49th to the 129th day, the dissolved oxygen in the reactor was maintained at fairly low concentration of 0.2-0.5 mg·L-1. The effluent contained nearly no ammonia and the maximum total nitrogen (TN) concentration was 15.6 mg·L-1, which exceeded the national Class 1A Discharge Standards for pollutants from municipal wastewater treatment plants. Nitrite oxidizing bacteria (NOB) proliferated excessively in the reactor. Backwash was implemented on 129th, 169th and 213th days. The nitrogen removal rate was more than 70% for a long time and TN concentration in effluent was below 12 mg·L-1. The nitrogen concentration in effluent fitted the national Class 1A Discharge Standards and the NOB were effectively inhibited. These results show that backwash has negligible on the structure of filter and its impact on the thickness of the bio-membrane and its functional bacteria was small, however, it is capable of effectively inhibiting the activity of the NOB. Periodically backwashing can be utilized as an engineering application to maintain stable operation of the CANON process. © 2017, Science Press. All right reserved.

关键词:

Ammonia Bacteria Dissolved oxygen Effluents Effluent treatment Filtration Nitrogen removal Passive filters Reclamation Sewage Sewage pumping plants Sewage treatment plants Wastewater treatment Water treatment plants

作者机构:

  • [ 1 ] [Li, Dong]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Zhao, Shi-Xun]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Wang, Jun-An]Technology Research and Development Center, Beijing Sander Environmental Group, Beijing; 101102, China
  • [ 4 ] [Zhu, Jin-Feng]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Guan, Hong-Wei]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 6 ] [Zhang, Jie]Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 7 ] [Zhang, Jie]State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin; 150090, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Environmental Science

ISSN: 0250-3301

年份: 2017

期: 11

卷: 38

页码: 4673-4678

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:111/3608011
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司