• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Fangzhai (Zhang, Fangzhai.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻) | Li, Baikun (Li, Baikun.) | Wang, Zhong (Wang, Zhong.) | Jiang, Hao (Jiang, Hao.) | Zhang, Qiong (Zhang, Qiong.)

收录:

EI Scopus SCIE PubMed

摘要:

Free nitrous acid (FNA) has only been studied as the pretreatment of waste activated sludge (WAS). Integrated fermentation and nitrogen removal using FNA as a primary means of treatment are seldom investigated. WAS fermentation was characterized under various FNA concentration. The production of COD, protein, and carbohydrate increased with FNA concentration (in the range of 0.197-1.97 mg/L) before the denitrification process. Volatile fatty acids (VFA) were only produced after complete denitrification. Potential FNA impact on fermentation step found FNA facilitated both solubilization and hydrolysis but inhibited acidification, acetogenesis, and methanogenesis processes. The types of fermentation were determined using threedimensional excitation-emission matrix (EEM) fluorescence spectroscopy. Protein-like substances and Tyrosine/Tryptophan were the most dominant dissolved organic matters (DOMs). The cell decay rate increased from 0.044 to 0.102/d based on the nonlinear fitting for the FNA concentration of 0.197-1.97 mg/L. The microbial biomass mortality ree - i bstances (T-EPS) exceeded 0.04 mg/L In addition, the microbial diversity and microbial structure were substan a operation, while the bacterial abundance associated with hydrolysis and acidification increased significantly.

关键词:

Waste activated sludge (WAS) Cell decay Free nitrous acid (FNA) Microbial community Fermentation

作者机构:

  • [ 1 ] [Zhang, Fangzhai]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Baikun]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Zhong]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 5 ] [Jiang, Hao]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Qiong]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

通讯作者信息:

  • 彭永臻

    [Peng, Yongzhen]Beijing Univ Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF HAZARDOUS MATERIALS

ISSN: 0304-3894

年份: 2020

卷: 381

1 3 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 18

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:436/3903799
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司