收录:
摘要:
Short-term traffic speed prediction is vital for proactive traffic control, and is one of the integral components of an intelligent transportation system (ITS). Accurate prediction of short-term travel speed has numerous applications for traffic monitoring, route planning, as well as helping to relieve traffic congestion. Previous studies have attempted to approach this problem using statistical and conventional artificial intelligence (AI) methods without accounting for influence of data collection time-horizons. However, statistical methods have received widespread criticism concerning prediction accuracy performance, while traditional AI approaches have too shallow architecture to capture non-linear stochastics variations in traffic flow. Hence, this study aims to explore prediction of short-term traffic speed at multiple time-ahead intervals using data collected from loop detectors. A fast forest quantile regression (FFQR) via hyperparameters optimization was introduced for predicting short-term traffic speed prediction. FFQR is an ensemble machine learning model that combines several regression trees to improve speed prediction accuracy. The accuracy of short-term traffic speed prediction was compared using the FFQR model at different data collection time-horizons. Prediction results demonstrated the adequacy and robustness of the proposed approach under different scenarios. It was concluded that prediction performance of FFQR was significantly enhanced and robust, particularly at time intervals larger than 5 min. The findings also revealed that speed prediction error (in terms of quantiles loss) ranged between 0.58 and 1.18.
关键词:
通讯作者信息:
电子邮件地址: