• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jinghua (Li, Jinghua.) | Tian, Pengyu (Tian, Pengyu.) | Kong, Dehui (Kong, Dehui.) (学者:孔德慧) | Wang, Lichun (Wang, Lichun.) (学者:王立春) | Wang, Shaofan (Wang, Shaofan.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Matrix-variate Restricted Boltzmann Machine (MVRBM), a variant of Restricted Boltzmann Machine, has demonstrated excellent capacity of modelling matrix variable. However, MVRBM is still an unsupervised generative model, and is usually used to feature extraction or initialization of deep neural network. When MVRBM is used to classify, additional classifiers must be added. In order to make the MVRBM itself be supervised, in this paper, we propose improved MVRBMs for classification, which can be used to classify 2D data directly and accurately. To this end, on one hand, classification constraint is added to MVRBM to get Matrix-variate Restricted Boltzmann Machine Classification Model (ClassMVRBM). On the other hand, fisher discriminant analysis criterion for matrix-style variable is proposed and applied to the hidden variable, therefore, the extracted feature is more discriminative so as to enhance the classification performance of ClassMVRBM. We call the novel model Matrix-variate Restricted Boltzmann Machine Classification Model with Fisher discriminant analysis (ClassMVRBM-MVFDA). Experimental results on some publicly available databases demonstrate the superiority of the proposed models. Of which, the image classification accuracy of ClassMVRBM is higher than conventional unsupervised RBM, its variants and supervised Restricted Boltzmann Machine Classification Model (ClassRBM) for vector variable. Especially, the image classification accuracy of the proposed ClassMVRBM-MVFDA performs better than supervised ClassMVRBM and vectorial RBM-FDA.

关键词:

MVRBM RBM ClassMVRBM-MVFDA ClassMVRBM

作者机构:

  • [ 1 ] [Li, Jinghua]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Tian, Pengyu]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 3 ] [Kong, Dehui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Lichun]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Shaofan]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 6 ] [Yin, Baocai]Dalian Univ Technol, Coll Comp Sci & Technol, Fac Elect Informat & Elect Engn, Dalian 116620, Peoples R China

通讯作者信息:

  • [Li, Jinghua]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

WIRELESS NETWORKS

ISSN: 1022-0038

年份: 2020

期: 5

卷: 27

页码: 3621-3633

3 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:163/4302437
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司