• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fang, Juan (Fang, Juan.) (学者:方娟) | Li, Baocai (Li, Baocai.) | Gao, Mingxia (Gao, Mingxia.)

收录:

EI Scopus SCIE

摘要:

In order to accurately obtain potential features and improve the recommendation performance of the collaborative filtering algorithm, this paper puts forward a collaborative filtering recommendation algorithm based on deep neural network fusion (CF-DNNF). CF-DNNF makes the best of the implicit attributes of data, where the text attributes and the other attributes are extracted from the data through the long short-term memory (LSTM) network and the deep neural network, respectively, so as to obtain the feature matrix that contains the user and item attribute information. Deep belief network (DBN) uses the feature matrix and outputs the probability. Besides, this paper initially discusses an interpretable collaborative filtering recommendation algorithm based on deep neural network fusion (ICF-DNNF). The paper compares the CF-DNNF algorithm with probabilistic matrix factorisation (PMF), SVD, and restricted Boltzmann-based collaborative filtering (RBM-CF) algorithms on the MovieLens dataset and the Amazon product dataset. Results indicate that the root mean square error (RMSE) of CF-DNNF is improved by 2.015%, and the mean absolute error (MAE) is improved by 2.222%.

关键词:

fusion RBM deep learning interpretable algorithm collaborative filtering recommendation restricted Boltzmann machine feature neural network MovieLens CF-DNNF

作者机构:

  • [ 1 ] [Fang, Juan]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Smart City, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Baocai]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Smart City, Beijing 100124, Peoples R China
  • [ 3 ] [Gao, Mingxia]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Smart City, Beijing 100124, Peoples R China

通讯作者信息:

  • 方娟

    [Fang, Juan]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Smart City, Beijing 100124, Peoples R China;;[Gao, Mingxia]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Smart City, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF SENSOR NETWORKS

ISSN: 1748-1279

年份: 2020

期: 2

卷: 34

页码: 71-80

1 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次: 14

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:268/4787448
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司