• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Xinfeng (Zhang, Xinfeng.) | Yang, Chao (Yang, Chao.) | Li, Xiaoguang (Li, Xiaoguang.) | Liu, Shan (Liu, Shan.) | Yang, Haitao (Yang, Haitao.) | Katsavounidis, Ioannis (Katsavounidis, Ioannis.) | Lei, Shaw-Min (Lei, Shaw-Min.) | Kuo, C. -C. Jay (Kuo, C. -C. Jay.)

收录:

SCIE

摘要:

Image compression has always been an important topic in the last decades due to the explosive increase of images. The popular image compression formats are based on different transforms which convert images from the spatial domain into compact frequency domain to remove the spatial correlation. In this paper, we focus on the exploration of data-driven transform, Karhunen-Loeve transform (KLT), the kernels of which are derived from specific images via Principal Component Analysis (PCA), and design a high efficient KLT based image compression algorithm with variable transform sizes. To explore the optimal compression performance, the multiple transform sizes and categories are utilized and determined adaptively according to their rate-distortion (RD) costs. Moreover, comprehensive analyses on the transform coefficients are provided and a band-adaptive quantization scheme is proposed based on the coefficient RD performance. Extensive experiments are performed on several class-specific images as well as general images, and the proposed method achieves significant coding gain over the popular image compression standards including JPEG, JPEG 2000, and the state-of-the-art dictionary learning based methods.

关键词:

adaptive quantization data-driven transform Dictionaries Discrete cosine transforms Image coding Image compression Karhunen-Loeve transform (KLT) Kernel principal component analysis (PCA) Quantization (signal) rate-distortion optimization Transform coding

作者机构:

  • [ 1 ] [Zhang, Xinfeng]Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China
  • [ 2 ] [Yang, Chao]Shanghai Univ, Sch Commun & Informat Engn, Shanghai Inst Adv Commun & Data Sci, Shanghai 200444, Peoples R China
  • [ 3 ] [Li, Xiaoguang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Shan]Tencent Media Lab, Palo Alto, CA 94306 USA
  • [ 5 ] [Yang, Haitao]Cent Res Inst Huawei Technol Co Ltd, Media Technol Lab, Shenzhen 518129, Peoples R China
  • [ 6 ] [Katsavounidis, Ioannis]Netflix Inc, Los Gatos, CA 95032 USA
  • [ 7 ] [Katsavounidis, Ioannis]Facebook, Los Gatos, CA 95030 USA
  • [ 8 ] [Lei, Shaw-Min]MediaTek, Hsinchu 30078, Taiwan
  • [ 9 ] [Kuo, C. -C. Jay]Univ Southern Calif, Ming Hsieh Dept Elect Engn, Los Angeles, CA 90089 USA

通讯作者信息:

  • [Zhang, Xinfeng]Univ Chinese Acad Sci, Sch Comp Sci & Technol, Beijing 100049, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON IMAGE PROCESSING

ISSN: 1057-7149

年份: 2020

卷: 29

页码: 9292-9304

1 0 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:28

JCR分区:1

被引次数:

WoS核心集被引频次: 13

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:216/3605088
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司