• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bai, Hai-Chuan (Bai, Hai-Chuan.) | Bao, Chang-Chun (Bao, Chang-Chun.) (学者:鲍长春) | Liu, Xin (Liu, Xin.)

收录:

EI Scopus PKU CSCD

摘要:

The auditory quality of wideband audio is generally degraded due to the lack of the high-frequency in network transmission, so this paper presents a kind of audio bandwidth extension method from wideband to super wideband based on local least square support vector machine. In the light of the nonlinearity of audio spectrum, the high-frequency fine spectrum of audio signals is predicted by using phase space reconstruction and local least square support vector machine. Combining with the estimation of high-frequency sub-band energy based on Gaussian mixture model, the proposed method can effectively recover the high-frequency components in the frequency range 7 kHz~14 kHz through the envelope adjustment of high-frequency spectrum at last. Subjective and objective testing results indicate that the proposed method improves the auditory quality of wideband audio and outperforms the reference methods of audio bandwidth extension. © 2016, Chinese Institute of Electronics. All right reserved.

关键词:

Frequency estimation Gaussian distribution Support vector machines Bandwidth Phase space methods Subjective testing Least squares approximations Vector spaces Vectors

作者机构:

  • [ 1 ] [Bai, Hai-Chuan]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Bao, Chang-Chun]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Liu, Xin]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [liu, xin]school of electronic information and control engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Acta Electronica Sinica

ISSN: 0372-2112

年份: 2016

期: 9

卷: 44

页码: 2203-2210

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:472/3903122
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司