• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Hengliang (Tang, Hengliang.) | Mi, Yuan (Mi, Yuan.) | Xue, Fei (Xue, Fei.) | Cao, Yang (Cao, Yang.)

收录:

EI Scopus SCIE

摘要:

Graph Convolutional Network (GCN) is extensively used in text classification tasks and performs well in the process of the non-euclidean structure data. Usually, GCN is implemented with the spatial-based method, such as Graph Attention Network (GAT). However, the current GCN-based methods still lack a more reasonable mechanism to account for the problems of contextual dependency and lexical polysemy. Therefore, an improved GCN (IGCN) is proposed to address the above problems, which introduces the Bidirectional Long Short-Term Memory (BiLSTM) Network, the Part-of-Speech (POS) information, and the dependency relationship. From a theoretical point of view, the innovation of IGCN is generalizable and straightforward: use the short-range contextual dependency and the long-range contextual dependency captured by the dependency relationship together to address the problem of contextual dependency and use a more comprehensive semantic information provided by the BiLSTM and the POS information to address the problem of lexical polysemy. What is worth mentioning, the dependency relationship is daringly transplanted from relation extraction tasks to text classification tasks to provide the graph required by IGCN. Experiments on three benchmarking datasets show that IGCN achieves competitive results compared with the other seven baseline models.

关键词:

text classification Semantics Convolution Feature extraction Bidirectional long short-term memory network part-of-speech information graph convolutional network dependency relationship Task analysis Recurrent neural networks Logic gates

作者机构:

  • [ 1 ] [Tang, Hengliang]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 2 ] [Mi, Yuan]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 3 ] [Xue, Fei]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 4 ] [Cao, Yang]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China
  • [ 5 ] [Tang, Hengliang]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China

通讯作者信息:

  • [Mi, Yuan]Beijing Wuzi Univ, Sch Informat, Beijing 101149, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2020

卷: 8

页码: 148865-148876

3 . 9 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:1339/3892044
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司