• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, LiMei (Zhang, LiMei.) | Kong, Heng (Kong, Heng.) | Zheng, Hong (Zheng, Hong.) (学者:郑宏)

收录:

EI Scopus SCIE

摘要:

The numerical manifold method (NMM) introduces the mathematical and physical cover to solve both continuum and discontinuum problems in a unified manner. In this study, the NMM for solving steady-state nonlinear heat conduction problems is presented, and heat conduction problems consider both convection and radiation boundary conditions. First, the nonlinear governing equation of thermal conductivity, which is dependent on temperature, is transformed into the Laplace equation by introducing the Kirchhoff transformation. The transformation reserves linearity of both the Dirichlet and the Neumann boundary conditions, but the Robin and radiation boundary conditions remain nonlinear. Second, the NMM is employed to solve the Laplace equation using a simple iteration procedure because the nonlinearity focuses on parts of the problem domain boundaries. Finally, the temperature field is retrieved through the inverse Kirchhoff transformation. Typical examples are analyzed, demonstrating the advantages of the Kirchhoff transformation over the direct solution of nonlinear equations using the Newton-Raphson method. This study provides a new method for calculating nonlinear heat conduction.

关键词:

convection and radiation boundary conditions numerical manifold method temperature-dependent thermal conductivity nonlinear heat conduction Kirchhoff transformation

作者机构:

  • [ 1 ] [Zhang, LiMei]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zheng, Hong]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Kong, Heng]Beijing Municipal Construct Co Ltd, Beijing 100048, Peoples R China

通讯作者信息:

  • [Zheng, Hong]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

SCIENCE CHINA-TECHNOLOGICAL SCIENCES

ISSN: 1674-7321

年份: 2023

期: 4

卷: 67

页码: 992-1006

4 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:486/4940665
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司