• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lang, Shinan (Lang, Shinan.) | Li, Guiqiang (Li, Guiqiang.) | Liu, Yi (Liu, Yi.) | Lu, Wei (Lu, Wei.) | Zhang, Qunying (Zhang, Qunying.) | Chao, Kun (Chao, Kun.)

收录:

EI Scopus SCIE

摘要:

To realize fast and effective synthetic aperture radar (SAR) deception jamming, a high-quality SAR deception jamming template library can be generated by performing sample augmentation on SAR deception jamming templates. However, the current sample augmentation schemes of SAR deception jamming templates face certain problems. First, the authenticity of the templates is low due to the lack of speckle noise. Second, the generated templates have a low similarity to the target and shadow areas of the input templates. To solve these problems, this study proposed a sample augmentation scheme based on generative adversarial networks, which can generate a high-quality library of SAR deception jamming templates with shadows. The proposed scheme solved the two aforementioned problems from the following aspects. First, the influence of the speckle noise was considered in the network to avoid the problem of reduced authenticity in the generated images. Second, a channel attention mechanism module was used to improve the network's learning ability of the shadow features, which improved the similarity between the generated template and the shadow area in the input template. Finally, the single generative adversarial network (SinGAN) scheme, which is a generative adversarial network capable of image sample augmentation for a single SAR image, and the proposed scheme were compared regarding the equivalent number of looks and the structural similarity between the target and shadow in the sample augmentation results. The comparison results demonstrated that, compared to the templates generated by the SinGAN scheme, those generated by the proposed scheme had targets and shadow features similar to those of the original image and could incorporate speckle noise characteristics, resulting in a higher authenticity, which helps to achieve fast and effective SAR deception jamming.

关键词:

deceptive jamming SAR image generation synthetic aperture radar (SAR) speckle noise generative adversarial networks (GANs)

作者机构:

  • [ 1 ] [Lang, Shinan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Guiqiang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Yi]China Elect Technol Grp Corp, Qingdao 266107, Peoples R China
  • [ 4 ] [Chao, Kun]China Elect Technol Grp Corp, Qingdao 266107, Peoples R China
  • [ 5 ] [Lu, Wei]Beijing Inst Radio Measurement, Beijing 100854, Peoples R China
  • [ 6 ] [Zhang, Qunying]Beijing Inst Radio Measurement, Beijing 100854, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

REMOTE SENSING

年份: 2023

期: 19

卷: 15

5 . 0 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:544/4966347
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司