• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiu, Tao (Qiu, Tao.) | Xu, Hui (Xu, Hui.) | Lei, Yan (Lei, Yan.)

收录:

EI Scopus PKU CSCD

摘要:

The high-speed flow of internal fuel in diesel fuel injector is easy to cause cavitation inside the nozzle, which affects the flow of fuel. It is very important to study the cavitation process of fuel in the nozzle. The flow characteristics of the nozzle under different inlet and outlet pressures is studied by experiments on the scale-enlarged visualization test bench. The experimental results show that the inlet pressure is constant, with the decrease in the outlet pressure, 1) during the no cavitation period, the discharge coefficient is basically unchanged; 2) during the cavitation developing period, cavitation becomes stronger and develops from the entrance of the nozzle to the outlet, the mass flow rate continues to increase and the discharge coefficient decreases; 3) during the cavitation saturation period, the mass flow rate maintains stable but the discharge coefficient continues decreasing. The inlet pressure of the nozzle does not affect the critical cavitation number of cavitation inception and cavitation saturation. The diameter of the nozzle does not affect the point of cavitation inception, but the point of cavitation saturation; as the diameter of the nozzle is larger, the more difficult it is to achieve the cavitation saturation, and the smaller of the critical cavitation number. The length of the nozzle affects the point of cavitation inception and cavitation saturation; the length of the nozzle is longer, the more difficult it is to occur cavitation and to achieve cavitation saturation, the critical cavitation numbers of both the cavitation inception and the cavitation saturation are smaller. © 2016, Editorial Board of Acta Armamentarii. All right reserved.

关键词:

Cavitation Diesel engines Fuel injection Fuels Mass transfer Nozzles

作者机构:

  • [ 1 ] [Qiu, Tao]College of Environmental and Energy Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Qiu, Tao]Collaborative Innovation Center for Electric Vehicles, Beijing; 100081, China
  • [ 3 ] [Xu, Hui]College of Environmental and Energy Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Lei, Yan]College of Environmental and Energy Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Acta Armamentarii

ISSN: 1000-1093

年份: 2016

期: 11

卷: 37

页码: 2114-2119

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:355/2893582
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司