• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yu, Pan (Yu, Pan.) | Wu, Qiang (Wu, Qiang.) | Liu, Chunfang (Liu, Chunfang.) | Liu, Nike (Liu, Nike.)

收录:

EI Scopus

摘要:

In this paper, a neural-network-based equivalent-input-disturbance (EID) approach is developed for a servo control system to improve the disturbance-rejection performance, where the radial basis function neural network (RBFNN) is used to approximate an EID of unknown and mismatched disturbances. First, by treating the Luenberger state observer as an ideal dynamics of the real system, the comparative output between the two systems is used to construct the RBFNN-based EID estimator. Then, by exploiting the two-degree-of-freedom property of the EID approach, the system analysis and design of the closed-loop control system is simplified to those of the tracking subsystem and the disturbance-rejection subsystem. Further, a design algorithm together with some guides is given. Finally, a case study of a motor driver system demonstrates the validity of the developed method. © 2023 Technical Committee on Control Theory, Chinese Association of Automation.

关键词:

Disturbance rejection Degrees of freedom (mechanics) Closed loop control systems Radial basis function networks

作者机构:

  • [ 1 ] [Yu, Pan]Beijing Institute of Artificial Intelligence, Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 2 ] [Wu, Qiang]Beijing Institute of Artificial Intelligence, Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 3 ] [Liu, Chunfang]Beijing Institute of Artificial Intelligence, Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 4 ] [Liu, Nike]Beijing Institute of Artificial Intelligence, Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1934-1768

年份: 2023

卷: 2023-July

页码: 2176-2181

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:332/4897398
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司