• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bi, Lanyue (Bi, Lanyue.) | Zhu, Xiaoqing (Zhu, Xiaoqing.) | Ruan, Xiaogang (Ruan, Xiaogang.) | Nan, Borui (Nan, Borui.)

收录:

EI Scopus

摘要:

Animals achieve precise locomotion through learning and practice, and many scholars are investigating how animals acquire new skills. Deep Reinforcement Learning (DRL) is often employed in skill learning and locomotion in robotics. However, the relationship between the learning process and neural networks or DRL remains unclear. In this paper, we propose a framework of backpropagation (BP) network based on matrix multiplication, which is implemented and visualized on a Field Programmable Gate Array (FPGA). This allows us to track changes in each neuron by analyzing nonlinear signals. By considering each register in the FPGA as a neuron, we can plot the weights of joints, which provides insights into the learning rules. © 2023 Technical Committee on Control Theory, Chinese Association of Automation.

关键词:

Field programmable gate arrays (FPGA) Neural networks Reinforcement learning Animals Backpropagation Deep learning

作者机构:

  • [ 1 ] [Bi, Lanyue]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 2 ] [Zhu, Xiaoqing]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 3 ] [Zhu, Xiaoqing]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 4 ] [Ruan, Xiaogang]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China
  • [ 5 ] [Ruan, Xiaogang]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 6 ] [Nan, Borui]Beijing University of Technology, Faculty of Information Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1934-1768

年份: 2023

卷: 2023-July

页码: 8662-8666

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:402/4957397
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司