• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gu, Hongsheng (Gu, Hongsheng.) | Li, Wenjing (Li, Wenjing.)

收录:

EI Scopus

摘要:

To achieve the real-time dynamic prediction of effluent biochemical oxygen demand (BOD) in the wastewater treatment process (WWTP), an online prediction method based on LSTM neural network (OPLSTM) is proposed in this paper. The online prediction is realized by sliding window strategy using the LSTM model, with the sliding window size adaptively adjusted by an adaptive method based on model performance and data distribution, and BPTT learning algorithm is used to update the parameters of the LSTM. The OPLSTM is first tested on two benchmark datasets and then applied to BOD prediction in WWTP. The experimental results show that the method can realize online prediction and obtain satisfactory prediction accuracy, and the adaptive method for sliding window size would improve the generalization performance of OPLSTM. © 2023 Technical Committee on Control Theory, Chinese Association of Automation.

关键词:

Effluents Effluent treatment Reclamation Long short-term memory Forecasting Wastewater treatment

作者机构:

  • [ 1 ] [Gu, Hongsheng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100024, China
  • [ 2 ] [Gu, Hongsheng]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 3 ] [Gu, Hongsheng]Beijing Artificial Intelligence Institute, Beijing; 100124, China
  • [ 4 ] [Gu, Hongsheng]Beijing Laboratory for Intelligent Environmental Protection, 100124, China
  • [ 5 ] [Li, Wenjing]Faculty of Information Technology, Beijing University of Technology, Beijing; 100024, China
  • [ 6 ] [Li, Wenjing]Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing; 100124, China
  • [ 7 ] [Li, Wenjing]Beijing Artificial Intelligence Institute, Beijing; 100124, China
  • [ 8 ] [Li, Wenjing]Beijing Laboratory for Intelligent Environmental Protection, 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1934-1768

年份: 2023

卷: 2023-July

页码: 1195-1199

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:546/4961957
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司