• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiu, Tao (Qiu, Tao.) | Song, Xin (Song, Xin.) | Lei, Yan (Lei, Yan.) | Xu, Hui (Xu, Hui.)

收录:

EI Scopus PKU CSCD

摘要:

To study the cavitation occurring in diesel nozzle and its effects on the flow capacity, the process of cavitation and the flow characteristics in diesel injector orifice were analyzed based on optical testing and three-dimensional CFD simulation. In the experiment, the visualization of cavitation was recorded by a high-speed camera, the frame rate was set to 6 688 frames per second. The high-frequency Kistler pressure transducers were assembled before and after the nozzle to acquire pressure. Ultimately, the data of pictures and pressure were stored by a computer. The 3D CFD diesel cavitation simulations were carried out under conditions of different inlet pressures and back pressures based on the commercial code Fluent. The CFD simulations were validated by the experimental data. The results showed that: when K>2.49, there were no bubbles in the nozzle, which was named no-cavitation period; during no-cavitation period, both the gas-liquid mixed phase volume fraction and the fuel mass flow in each section did not increase and the flow coefficient was constant. When K≤2.49, it is the cavitation developing period when the gas-liquid mixed phase volume fraction of the entrance of the nozzle (plane A) started to increase which represented cavitation inception. At the same time, the growth rate of fuel mass flow reduced, and the flow coefficient began to decreased. When K≤1.91, the gas-liquid mixed phase volume at plane A became stable, which meant the cavitation saturation period. During the saturation period, the fuel mass flow rised to its maximum and maintained stable while the flow coefficient decreased. It can be seen that the cavitation occurred in diesel injector nozzle had large impact on the flow characteristics. Meanwhile, the cavitation had impact on the fuel mass flow, the flow coefficient and the gas-liquid mixing phase volume fraction at different nozzle cross sections. © 2016, Chinese Society of Agricultural Machinery. All right reserved.

关键词:

Cavitation Computational fluid dynamics Computer simulation Diesel engines Fuels High speed cameras Liquids Mass transfer Nozzles Volume fraction

作者机构:

  • [ 1 ] [Qiu, Tao]College of Environmental and Energy Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Qiu, Tao]Collaborative Innovation Center of Electric Vehicles in Beijing, Beijing; 100081, China
  • [ 3 ] [Song, Xin]College of Environmental and Energy Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Lei, Yan]College of Environmental and Energy Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Xu, Hui]College of Environmental and Energy Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Transactions of the Chinese Society for Agricultural Machinery

ISSN: 1000-1298

年份: 2016

期: 9

卷: 47

页码: 359-365

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:511/2895090
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司