• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Xu, Cheng (Xu, Cheng.) | Zhang, Xiaodan (Zhang, Xiaodan.) | Wang, Boyue (Wang, Boyue.) | Song, Xinhang (Song, Xinhang.)

收录:

SSCI EI Scopus SCIE

摘要:

Visual attention has been successfully applied in image captioning to selectively incorporate the most relevant areas to the language generation procedure. However, the attention in current image captioning methods is only guided by the hidden state of language model, e.g. LSTM (Long-Short Term Memory), indirectly and implicitly, and thus the attended areas are weakly relevant at different time steps. Besides the spatial relationship of attention areas, the temporal relationship in attention is crucial for image captioning according to the attention transmission mechanism of human vision. In this paper, we propose a new spatio-temporal memory attention (STMA) model to learn the spatio-temporal relationship in attention for image captioning. The STMA introduces the memory mechanism to the attention model through a tailored LSTM, where the new cell is used to memorize and propagate the attention information, and the output gate is used to generate attention weights. The attention in STMA transmits with memory adaptively and dependently, which builds strong temporal connections of attentions and learns the spatio-temporal relationship of attended areas simultaneously. Besides, the proposed STMA is flexible to combine with attention-based image captioning frameworks. Experiments on MS COCO dataset demonstrate the superiority of the proposed STMA model in exploring the spatio-temporal relationship in attention and improving the current attention-based image captioning.

关键词:

LSTM memory attention attention transmission Image captioning spatio-temporal relationship

作者机构:

  • [ 1 ] [Ji, Junzhong]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 2 ] [Xu, Cheng]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Xiaodan]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Boyue]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 5 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 6 ] [Xu, Cheng]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Xiaodan]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 8 ] [Wang, Boyue]Beijing Univ Technol, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 9 ] [Song, Xinhang]Chinese Acad Sci, Inst Comp Technol, CAS, Key Lab Intelligent Informat Proc, Beijing 100190, Peoples R China

通讯作者信息:

  • [Zhang, Xiaodan]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON IMAGE PROCESSING

ISSN: 1057-7149

年份: 2020

卷: 29

页码: 7615-7628

1 0 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 60

SCOPUS被引频次: 73

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:307/4975936
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司