• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Kang (Wang, Kang.) | Li, Xiao-Li (Li, Xiao-Li.) (学者:李晓理) | Jia, Chao (Jia, Chao.) | Song, Gui-Zhi (Song, Gui-Zhi.)

收录:

EI Scopus PKU CSCD

摘要:

Super fine slag powder is a new kind of green environmental-friendly construction material, which can greatly improve the mechanical properties of cement concrete. However, the slag powder grinding process is hard to identify by a mechanism model. In this paper, a data-driven based recurrent neural network model is constructed utilizing the information measured from slag grinding system. Based on this model, an adaptive dynamic programming algorithm is proposed to realize the optimal tracking control with constrained control input. Further, this algorithm is applied to the slag grinding process. Simulation examples show that the data-based model can effectively identify the grinding process, and the control method can realize the optimal tracking control of specific surface area and mill differential pressure with control constraints. Copyright © 2016 Acta Automatica Sinica. All rights reserved.

关键词:

Dynamic programming Navigation Process control Grinding (machining) Dynamics Slags Recurrent neural networks

作者机构:

  • [ 1 ] [Wang, Kang]School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing; 100083, China
  • [ 2 ] [Li, Xiao-Li]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Jia, Chao]School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing; 100083, China
  • [ 4 ] [Song, Gui-Zhi]Jinan Luxin Materials Company Limited, Jinan; 250109, China

通讯作者信息:

  • 李晓理

    [li, xiao-li]college of electronic information and control engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Acta Automatica Sinica

ISSN: 0254-4156

年份: 2016

期: 10

卷: 42

页码: 1542-1551

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:210/3911560
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司