• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Huang, Xiaohui (Huang, Xiaohui.) | Fu, Xin (Fu, Xin.) | Xiong, Liyan (Xiong, Liyan.) | Ye, Yunming (Ye, Yunming.) | Wang, Shaokai (Wang, Shaokai.) | Du, Xiaolin (Du, Xiaolin.)

收录:

EI Scopus

摘要:

Multiple Nonnegative Matrices Factorization (MNMF) is a promising method to study and analyze a dataset which has different types of features or relationships. However, due to the high computational cost, MNMF cannot meet the needs of time response for large-scale datasets. In this paper, we introduce a Parallel Multiple Nonnegative Matrices Factorization (PMNMF) approach which is implemented on Graphics Processing Unit (GPU) under the Compute Unified Device Architecture (CUDA) framework. Experimental studies demonstrate that PMNMF approach using GPU is able to obtain 100× speedup in comparison to the traditional multiple nonnegative matrices factorization under our experimental condition. © 2016 ICIC International.

关键词:

Computer graphics Computer graphics equipment Factorization Matrix algebra Program processors

作者机构:

  • [ 1 ] [Huang, Xiaohui]School of Information Engineering, East China Jiaotong University, No. 808, Shuanggang East Ave., Nanchang; 330013, China
  • [ 2 ] [Fu, Xin]Jiangxi College of Construction, No. 999, Huiren Ave., Nanchang; 330200, China
  • [ 3 ] [Xiong, Liyan]School of Information Engineering, East China Jiaotong University, No. 808, Shuanggang East Ave., Nanchang; 330013, China
  • [ 4 ] [Ye, Yunming]Shenzhen Graduate School, Harbin Institute of Technology, HIT Campus at Xili University Town, Shenzhen; 518055, China
  • [ 5 ] [Wang, Shaokai]Shenzhen Graduate School, Harbin Institute of Technology, HIT Campus at Xili University Town, Shenzhen; 518055, China
  • [ 6 ] [Du, Xiaolin]College of Computer Science, Beijing University of Technology, No. 100, Pingleyuan, Chaoyang Dist., Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ICIC Express Letters

ISSN: 1881-803X

年份: 2016

期: 12

卷: 10

页码: 2905-2912

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:173/3605672
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司