收录:
摘要:
Based on the concept of waste control by waste, agroforestry waste oil-tea cake was used to remove azo dye Reactive Red 15 (RR15) via biosorption from aqueous solution. To optimize the biosorption condition, a Box-Behnken Design with a response surface methodology was carried out. Three independent variables-pH, initial RR15 concentration and biosorption temperature-were studied, and biosorption capacity and removal efficiency were set as the response values. Statistical analysis showed that pH was highly significant for both biosorption capacity and removal efficiency (P0gained from Langmuir isotherm model at 20 was 74.63 mg/g. The kinetic study showed that the experimental data were well fitted by the pseudo-second-order model (R2>0.9997), which indicated that the dominant biosorption belonged to the chemisorptive nature. Both intra-particle diffusion and boundary layer diffusion might affect the biosorption rate. Thermodynamic study demonstrated that the biosorption was a spontaneous and exothermic process. To understand the mechanical behavior of RR15 biosorption process, SEM, EDS and FTIR were employed to characterize the oil-tea cake pre-and post-biosorption. The FTIR analysis indicated that functional groups (e.g., amine, hydroxyl) on the oil-tea cake biosorbent were the active binding sites for the RR15 biosorption. These results showed that oil-tea cake is a promising biosorbent, which could effectively remove RR15 from dye wastewater. © 2015, Editorial Department of Molecular Catalysis. All right reserved.
关键词:
通讯作者信息:
电子邮件地址: