• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Tong (Liu, Tong.) | Chen, Sheng (Chen, Sheng.) | Liang, Shan (Liang, Shan.) | Gan, Shaojun (Gan, Shaojun.) | Harris, Chirs J. (Harris, Chirs J..)

收录:

EI Scopus SCIE

摘要:

For a learning model to be effective in online modeling of nonstationary data, it must not only be equipped with high adaptability to track the changing data dynamics but also maintain low complexity to meet online computational restrictions. Based on these two important principles, in this paper, we propose a fast adaptive gradient radial basis function (GRBF) network for nonlinear and nonstationary time series prediction. Specifically, an initial compact GRBF model is constructed on the training data using the orthogonal least squares algorithm, which is capable of modeling variations of local mean and trend in the signal well. During the online operation, when the current model does not perform well, the worst performing GRBF node is replaced by a new node, whose structure is optimized to fit the current data. Owing to the local one-step predictor property of GRBF node, this adaptive node replacement can be done very efficiently. Experiments involving two chaotic time series and two real-world signals are used to demonstrate the superior online prediction performance of the proposed fast adaptive GRBF algorithm over a range of benchmark schemes, in terms of prediction accuracy and real-time computational complexity.

关键词:

gradient RBF network Nonlinear and nonstationary signals adaptive algorithm tunable nodes prediction radial basis function (RBF) network

作者机构:

  • [ 1 ] [Liu, Tong]Chongqing Univ, Minist Educ, Sch Automat, Key Lab Dependable Serv Comp Cyber Phys Soc, Chongqing 400044, Peoples R China
  • [ 2 ] [Liang, Shan]Chongqing Univ, Minist Educ, Sch Automat, Key Lab Dependable Serv Comp Cyber Phys Soc, Chongqing 400044, Peoples R China
  • [ 3 ] [Chen, Sheng]Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
  • [ 4 ] [Harris, Chirs J.]Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England
  • [ 5 ] [Chen, Sheng]King Abdulaziz Univ, Jeddah 21589, Saudi Arabia
  • [ 6 ] [Gan, Shaojun]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Traff Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Chen, Sheng]Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, Hants, England

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON SIGNAL PROCESSING

ISSN: 1053-587X

年份: 2020

卷: 68

页码: 2015-2030

5 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 32

SCOPUS被引频次: 36

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:1378/4271216
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司