• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Jiangyu (Wang, Jiangyu.) | Wang, Ding (Wang, Ding.) (学者:王鼎) | Li, Xin (Li, Xin.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

In this paper, a novel parallel learning framework is developed to solve zero-sum games for discrete -time nonlinear systems. Briefly, the purpose of this study is to determine a tentative function according to the prior knowledge of the value iteration (VI) algorithm. The learning process of the parallel controllers can be guided by the tentative function. That is to say, the neighborhood of the optimal cost function can be compressed within a small range via two typical exploration policies. Based on the parallel learning framework, a novel dichotomy VI algorithm is established to accelerate the learning speed. It is shown that the parallel controllers will converge to the optimal policy from contrary initial policies. Finally, two typical systems are used to demonstrate the learning performance of the constructed dichotomy VI algorithm.(c) 2023 Elsevier Ltd. All rights reserved.

关键词:

Zero -sum games Value iteration Artificial neural networks Nonlinear systems Parallel learning Adaptive critic

作者机构:

  • [ 1 ] [Wang, Jiangyu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Xin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Jiangyu]Beijing Univ Technol, Key Lab Computat Intelligence & Intelligent Syst, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Xin]Beijing Univ Technol, Key Lab Computat Intelligence & Intelligent Syst, Beijing 100124, Peoples R China
  • [ 7 ] [Qiao, Junfei]Beijing Univ Technol, Key Lab Computat Intelligence & Intelligent Syst, Beijing 100124, Peoples R China
  • [ 8 ] [Wang, Jiangyu]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 9 ] [Li, Xin]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 10 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 11 ] [Wang, Jiangyu]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
  • [ 12 ] [Li, Xin]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
  • [ 13 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

NEURAL NETWORKS

ISSN: 0893-6080

年份: 2023

卷: 167

页码: 751-762

7 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 4

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:435/4968604
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司