• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shu, Yu (Shu, Yu.) | Liang, Jinwen (Liang, Jinwen.) | Rong, Yaohua (Rong, Yaohua.) | Fu, Zhenzhen (Fu, Zhenzhen.) | Yang, Yi (Yang, Yi.)

收录:

Scopus SCIE

摘要:

Ignoring potential spatial autocorrelation in georeferenced data may cause biased estimators. Furthermore, existing studies assume insufficiently flexible structure of spatial lag model for some practical applications, which makes it difficult to portray the complex relationship between responses and covariates. Thus, we propose a novel garrotized kernel machine estimation method for the nonparametric spatial lag model and develop an eigenvector spatial filtering algorithm with sparse regression to filter spatial autocorrelation out of the residuals. The "one-groupat-a-time"cyclical coordinate descent algorithm is introduced for a solution path of tuning parameters. Our method can better describe the potential nonlinear relationship between responses and covariates, making it possible to model high-order interaction effects among covariates. Numerical results and the analysis of commodity residential house prices in large and mediumsized Chinese cities indicate that the proposed method achieves better prediction performance compared with competing ones. The result of real data analysis can provide guidance for the government to take targeted suppression measures of house prices for different areas.

关键词:

Spatial lag model Spatial autocorrelation Kernel machine Eigenvector spatial filtering Nonparametric regression

作者机构:

  • [ 1 ] [Shu, Yu]Beijing Univ Technol, Fac Sci, Beijing, Peoples R China
  • [ 2 ] [Liang, Jinwen]Beijing Univ Technol, Fac Sci, Beijing, Peoples R China
  • [ 3 ] [Rong, Yaohua]Beijing Univ Technol, Fac Sci, Beijing, Peoples R China
  • [ 4 ] [Fu, Zhenzhen]Beijing Univ Technol, Fac Sci, Beijing, Peoples R China
  • [ 5 ] [Yang, Yi]Beijing Univ Technol, Fac Sci, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

SPATIAL STATISTICS

ISSN: 2211-6753

年份: 2023

卷: 58

2 . 3 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:593/4962217
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司