• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Feng, Jianyong (Feng, Jianyong.) | Liu, Zhihao (Liu, Zhihao.) | Zhou, Zhiwei (Zhou, Zhiwei.) | Ren, Jianwei (Ren, Jianwei.) | Yang, Yanling (Yang, Yanling.) | Li, Xing (Li, Xing.) (Scholars:李星) | Tan, Xu (Tan, Xu.)

Indexed by:

Scopus SCIE

Abstract:

The rapid maturation of the gravity-driven membrane (GDM) process for manganese removal from surface water is critical to its practical application. In this study, KMnO4 and NaClO were used to investigate their effects on the start-up period of the GDM process for treating manganese-containing surface water. The start-up period of the GDM system with KMnO4 (24 days) was shorter compared to that with NaClO (40 days). After the addition of KMnO4 and NaClO, the stable flux of the GDM system was significantly improved, and the bio-cake layer became more porous, which was ascribed to the reduction of proteins in the extracellular polymeric substances (EPS). The active manganese oxide (MnOx) in the bio-cake layer was identified as delta-MnO2. The addition of the oxidants increased the proportion of Mn(III) with high catalytic oxidation activity in delta-MnO2, where the assisted effect of KMnO4 (43.7%) was superior to that of NaClO (27.8%). The development of delta-MnO2 in the natural filtration state was ascribed to the enrichment of manganese oxidizing bacteria (MnOB). The biological action only accounted for 9.4%-12.3% of the manganese removal and was not dominant. The difference in the start-up period of the GDM process was dependent on the autocatalytic oxidation of Mn(III) in delta-MnO2 in the bio-cake layer. These findings provided acceptable and practical strategies for the rapid and safe manganese removal in the GDM process.

Keyword:

Gravity-driven membrane (GDM) Bio-cake layer Manganese oxide regulation Pre -oxidation Manganese removal

Author Community:

  • [ 1 ] [Feng, Jianyong]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Zhihao]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Zhou, Zhiwei]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Ren, Jianwei]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Yang, Yanling]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Xing]Beijing Univ Technol, Fac Architecture Civil & Transportat Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Liu, Zhihao]CAUPD Beijing Planning & Design Consultants Ltd, Beijing, Peoples R China
  • [ 8 ] [Tan, Xu]China Architecture Design & Res Grp, Beijing 100044, Peoples R China
  • [ 9 ] [Li, Xing]Beijing Univ Technol, 100 Xi Da Wang Rd, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

JOURNAL OF WATER PROCESS ENGINEERING

ISSN: 2214-7144

Year: 2023

Volume: 56

7 . 0 0 0

JCR@2022

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 5

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:739/5309357
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.