收录:
摘要:
The aim of this paper is to investigate the adhesion of municipal solid waste incinerator bottom ash (MSWIBA) and limestone to asphalt using the principles of surface energy theory. MSWIBA asphalt mixes are known for their satisfactory water stability, with adhesion being a crucial factor, as demonstrated in previous freeze-thaw splitting tests. Contact angles of ground MSWIBA and limestone were measured using a capillary rise test, eliminating the influence of material surface structure. Subsequently, adhesion work and spalling work were calculated to correlate with water-induced damage. The results showed that the sequence of adhesion work was fine MSWIBA > limestone > coarse MSWIBA, while the sequence of spalling work was coarse MSWIBA > limestone > fine MSWIBA. The adhesion of MSWIBA asphalt mixes was evaluated using the water boiling test image method to validate the findings of surface energy theory. In both asphalt tests, the spalling rate followed this sequence: coarse MSWIBA > limestone > fine MSWIBA. The Adhesion index ER ranked as follows: ER (Fine MSWIBA) > ER (limestone )> ER (coarse MSWIBA). These results suggest that the water stability of MSWIBA asphalt mixes is influenced by the surface energy of the components. Consequently, indices derived from surface energy theory can be applied in formulating and predicting the properties of MSWIBA asphalt mixes.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
JOURNAL OF ADHESION
ISSN: 0021-8464
年份: 2023
期: 10
卷: 100
页码: 923-946
归属院系: