• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chang, Peng (Chang, Peng.) | Wang, Pu (Wang, Pu.) (学者:王普) | Gao, Xue-Jin (Gao, Xue-Jin.) (学者:高学金)

收录:

EI Scopus PKU CSCD

摘要:

Previous studies on batch microbial fermentation usually considered data maximization but lack of data cluster structure information. A Multi-way Kernel Entropy Component Analysis (MKECA) method was proposed to solve this problem, which overcome the drawbacks of traditional monitoring methods on high monitoring failure rates. The AT method was first used for historical data preprocessing and mapping data from low-dimensional space to high dimensional feature space to solve data nonlinearity. Data in the high dimensional feature space was moved to lower dimension based on the size of the data kernel entropy, in order to keep the original data distribution. Meanwhile, the proposed method was equivalent to the traditional method under certain conditions. Penicillin simulation data verifies that MKECA is more reliable and accurate which may have broad potential applications. ©, 2015, Zhejiang University. All right reserved.

关键词:

Batch data processing Entropy Failure analysis Fermentation Process control Process monitoring

作者机构:

  • [ 1 ] [Chang, Peng]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Wang, Pu]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Gao, Xue-Jin]College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • 王普

    [wang, pu]college of electronic information and control engineering, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Chemical Engineering of Chinese Universities

ISSN: 1003-9015

年份: 2015

期: 2

卷: 29

页码: 395-399

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:63/3278911
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司