• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Xiaolin (Han, Xiaolin.) | Yu, Jing (Yu, Jing.) | Xue, Jing-Hao (Xue, Jing-Hao.) | Sun, Weidong (Sun, Weidong.)

收录:

EI Scopus SCIE

摘要:

Spectral or spatial dictionary has been widely used in fusing low-spatial-resolution hyperspectral (LH) images and high-spatial-resolution multispectral (HM) images. However, only using spectral dictionary is insufficient for preserving spatial information, and vice versa. To address this problem, a new LH and HM image fusion method termed OTD using optimized twin dictionaries is proposed in this paper. The fusion problem of OTD is formulated analytically in the framework of sparse representation, as an optimization of twin spectral-spatial dictionaries and their corresponding sparse coefficients. More specifically, the spectral dictionary representing the generalized spectrums and its spectral sparse coefficients are optimized by utilizing the observed LH and HM images in the spectral domain; and the spatial dictionary representing the spatial information and its spatial sparse coefficients are optimized by modeling the rest of high-frequency information in the spatial domain. In addition, without non-negative constraints, the alternating direction methods of multipliers (ADMM) are employed to implement the above optimization process. Comparison results with the related state-of-the-art fusion methods on various datasets demonstrate that our proposed OTD method achieves a better fusion performance in both spatial and spectral domains.

关键词:

Image fusion Mathematical model Optimization spatial dictionary Dictionaries Spatial resolution spectral dictionary Bayes methods Hyperspectral image fusion optimized twin dictionaries (OTD) Hyperspectral imaging

作者机构:

  • [ 1 ] [Han, Xiaolin]Tsinghua Univ, Inst Artificial Intelligence, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol,State, Beijing 100084, Peoples R China
  • [ 2 ] [Sun, Weidong]Tsinghua Univ, Inst Artificial Intelligence, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol,State, Beijing 100084, Peoples R China
  • [ 3 ] [Yu, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Xue, Jing-Hao]UCL, Dept Stat Sci, London WC1E 6BT, England

通讯作者信息:

  • [Sun, Weidong]Tsinghua Univ, Inst Artificial Intelligence, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol,State, Beijing 100084, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON IMAGE PROCESSING

ISSN: 1057-7149

年份: 2020

卷: 29

页码: 4709-4720

1 0 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 47

SCOPUS被引频次: 48

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:147/4765951
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司