• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bi, Yandong (Bi, Yandong.) | Jiang, Huajie (Jiang, Huajie.) | Zhang, Hanfu (Zhang, Hanfu.) | Hu, Yongli (Hu, Yongli.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

As a popular cross-modal reasoning task, Visual Question Answering (VQA) has achieved great progress in recent years. However, the issue of language bias has always affected the reliability of VQA models. To address this problem, counterfactual learning methods are proposed to learn more robust features to mitigate the bias problem. However, current counterfactual learning approaches mainly focus on generating synthesized samples and assigning answers to them, neglecting the relationship between factual and original data, which hinders robust feature learning for effective reasoning. To overcome this limitation, we propose a Self-supervised Knowledge Distillation approach in Counterfactual Learning for VQA, dubbed as VQA-SkdCL, which utilizes a self-supervised constraint to make good use of the hidden knowledge in the factual samples, enhancing the robustness of VQA models. We demonstrate the effectiveness of the proposed approach on VQA v2, VQA-CP v1, and VQA-CP v2 datasets and our approach achieves excellent performance.

关键词:

Counterfactual learning Language bias Visual question answering Self-supervised learning

作者机构:

  • [ 1 ] [Bi, Yandong]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Jiang, Huajie]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Hanfu]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Hu, Yongli]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Jiang, Huajie]Beijing Univ Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Jiang, Huajie]Beijing Univ Technol, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

PATTERN RECOGNITION LETTERS

ISSN: 0167-8655

年份: 2023

卷: 177

页码: 33-39

5 . 1 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:550/4953507
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司