• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bo, Li (Bo, Li.) | Yong, Zhang (Yong, Zhang.) (学者:张勇) | Ren, Yunhan (Ren, Yunhan.) | Zhang, Chengyang (Zhang, Chengyang.) | Yin, Baocai (Yin, Baocai.)

收录:

EI Scopus SCIE

摘要:

Cell localization constitutes a fundamental research domain within the realm of pathology image analysis, with its core objective being the precise identification of cell spatial coordinates. The task has always involved the challenge of large color variations among cells, uneven distribution, and overlapping borders. Furthermore, in realistic cell localization scenarios, the existing state-of-the-art methods suffer from high computational costs and slow inference times, which severely reduce the efficiency of computer-assisted. To tackle the above issues, a lightweight and efficient cell localization model named Lite-UNet is proposed. Specifically, the Lite-UNet encompasses three pivotal modules. Firstly, we introduce a gradient aggregation module grounded in difference convolution. This module effectively mitigates the challenge posed by extensive color variations among cells by adeptly leveraging gradient information. Secondly, we propose an efficient plug-and-play graph correlation attention module, which optimizes the feature representation capabilities by encoding higher-order feature associations. Finally, we design a lightweight Ghost_CBAM module that alleviates the difficulty of uneven cell distribution while forming the base module of the Lite-UNet. Extensive experiments show that our LiteUNet is capable of locating cells in images quickly and accurately, thus further improving the efficiency of computer-assisted medicine.

关键词:

Cell localization Graph correlation attention Gradient aggregation Difference convolution Ghost_CBAM

作者机构:

  • [ 1 ] [Bo, Li]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Yong, Zhang]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Chengyang]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yin, Baocai]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Ren, Yunhan]Beijing Univ Technol, Beijing Dublin Int Coll, Beijing 100124, Peoples R China

通讯作者信息:

  • [Yong, Zhang]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Inst Artificial Intelligence, Fac Informat Technol, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE

ISSN: 0952-1976

年份: 2023

卷: 129

8 . 0 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:510/4978590
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司