• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Ding (Wang, Ding.) | Li, Xin (Li, Xin.) | Zhao, Mingming (Zhao, Mingming.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

The wastewater treatment process (WWTP) is of great significance to environmental protection. To improve the efficiency of the WWTP, it is crucial to ensure that the dissolved oxygen (DO) concentration tracks the set value efficiently. Due to the nonlinear and time-varying dynamics of the WWTP, traditional control methods cannot accurately control the DO concentration. To overcome these challenges, this paper proposes an online transferred heuristic dynamic programming (TrHDP) control design by combining transfer learning with adaptive critic design. First, we use the historical sample data to construct a mathematical model of the WWTP and learn the prior knowledge from the model. Then, the online control process of the DO concentration is guided by utilizing the prior knowledge. In order to avoid negative transfer and save computing resources, we design a novel decay function with the truncation mechanism. In addition, we prove the stability of the TrHDP control scheme by constructing a Lyapunov function. Finally, the performance of the TrHDP scheme is verified by the Benchmark Simulation Model No. 1. Compared with other methods, the TrHDP method possesses higher control accuracy for the DO concentration and overcomes the disadvantage of low learning efficiency of general online methods.

关键词:

transfer learning neural networks reinforcement learning wastewater treatment applications Adaptive dynamic programming

作者机构:

  • [ 1 ] [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Xin]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Zhao, Mingming]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Ding]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 6 ] [Li, Xin]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 7 ] [Zhao, Mingming]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China
  • [ 8 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China;;[Wang, Ding]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

ISSN: 1551-3203

年份: 2023

期: 2

卷: 20

页码: 1488-1497

1 2 . 3 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 34

SCOPUS被引频次: 38

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:547/4964093
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司