• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Haibin (Wang, Haibin.) | Lou, Hezi (Lou, Hezi.) | Xing, Ming (Xing, Ming.) | Liu, Xuemei (Liu, Xuemei.) | Song, Xiaoyan (Song, Xiaoyan.) (学者:宋晓艳)

收录:

EI Scopus SCIE

摘要:

In this work, the experimentally observed tribological phenomena of WC-Co cemented carbides were interpreted on the atomic scale using molecular dynamics simulations. It was demonstrated that the friction-induced deformation was mainly coordinated by dislocations slip in both Co and WC phases, along with the local rotation of WC grains adjacent to the Co binder. The dislocation motion within the subsurface Co phase was crucial for the continuous transfer of stress across WC/Co interfaces. The fracture of WC grains, which frequently occurs in various friction processes, was found to result from interactions between the internal partial dislocations. This caused formation of atomic-scale micro-voids early at the intersection. Significantly higher tensile stress existed at the WC/WC grain boundaries, which resulted in a higher risk of intergranular cracking compared to that at the WC/Co interfaces during the friction process. The findings in the present study facilitate to understand the tribological behavior of a variety of cermet materials hence to improve their wear resistance.

关键词:

Molecular dynamics simulation WC -co cemented carbides Dislocation motion Tribological behavior Atomic-scale fracture mechanism

作者机构:

  • [ 1 ] [Wang, Haibin]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 2 ] [Lou, Hezi]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 3 ] [Xing, Ming]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Xuemei]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China
  • [ 5 ] [Song, Xiaoyan]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Haibin]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China;;[Song, Xiaoyan]Beijing Univ Technol, Fac Mat & Mfg, Key Lab Adv Funct Mat, Minist Educ China, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS

ISSN: 0263-4368

年份: 2023

卷: 118

3 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:320/4977054
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司