• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tu, Shanshan (Tu, Shanshan.) | Rehman, Obaid Ur (Rehman, Obaid Ur.) | Rehman, Sadaqat Ur (Rehman, Sadaqat Ur.) | Ullah, Shafi (Ullah, Shafi.) | Waqas, Muhammad (Waqas, Muhammad.) | Zhu, Ran (Zhu, Ran.)

收录:

EI Scopus SCIE

摘要:

Quantum inspired particle swarm optimization (QPSO) stimulated by perceptions from particle swarm optimization and quantum mechanics is a stochastic optimization method. Although, it has shown good performance in finding the optimal solution to many electromagnetic problems. However, sometimes it falls to local optima when dealing with hard optimization problems. Thus, to preserve a good balance between local and global searches to avoid premature convergence in quantum particle swarm optimization, this paper proposed three enhancements to the original QPSO method, the proposed method is called modified quantum particle swarm optimization (MQPSO) algorithm. Firstly, a novel selection technique is introduced that will choose the best particle among the population within the search domain to achieve a high-performance exploration. Secondly, a new mutation method is used to preserve the easiness of available QPSOs. Also, a dynamic parameter strategy is proposed for further facilitating the algorithm and tradeoff between exploration and exploitation searches. The experimental results obtained by solving standard benchmark functions and an electromagnetic design problem which is the superconducting magnetic energy storage (SMES) system available in both three parameters and eight parameters problems are reported to showcase the usefulness of the proposed approach.

关键词:

mutation mechanism optimization design particle swarm optimizer Electromagnetic application quantum mechanics

作者机构:

  • [ 1 ] [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100022, Peoples R China
  • [ 2 ] [Rehman, Obaid Ur]Sarhad Univ Sci & Informat Technol, Dept Elect Engn, Peshawar 25000, Pakistan
  • [ 3 ] [Rehman, Sadaqat Ur]Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
  • [ 4 ] [Ullah, Shafi]Islamia Coll Univ, Dept Elect, Peshawar 25000, Pakistan
  • [ 5 ] [Waqas, Muhammad]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Trusted Comp, Beijing 100022, Peoples R China
  • [ 6 ] [Waqas, Muhammad]GIK Inst Engn Sci & Technol, Fac Comp Sci & Engn, Topi 23460, Pakistan
  • [ 7 ] [Zhu, Ran]Beijing Electromech Engn Inst, Beijing 100074, Peoples R China

通讯作者信息:

  • [Rehman, Obaid Ur]Sarhad Univ Sci & Informat Technol, Dept Elect Engn, Peshawar 25000, Pakistan

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2020

卷: 8

页码: 21909-21916

3 . 9 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 33

SCOPUS被引频次: 41

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1177/4270345
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司