• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Chaofan (Xu, Chaofan.) | Tang, Jian (Tang, Jian.) | Xia, Heng (Xia, Heng.) | Yu, Wen (Yu, Wen.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

Dioxin (DXN), a by-product from the municipal solid waste incineration (MSWI) process, is an organic pollutant; thus, it is extremely harmful to the ecological environment and difficult to detect in real time. A selective ensemble (SEN) model for DXN emission concentration based on Bayesian inference and binary trees is proposed given the weak interpretability, high model complexity, and poor generalization performance of the existing DXN emission concentration prediction model. Initially, bagging sampling is used to obtain different data subsets. The binary tree, as the candidate submodel, is constructed based on the sub-datasets, and the prior information of the leaf nodes and the predicted values of the candidate submodel are calculated. Bayesian inference is used to calculate the posterior information to characterize the fitness of the candidate submodel. Based on the posterior error, the best submodel is selected as the ensemble submodel. These processes are repeated to obtain all the ensembled submodels and the corresponding posterior information. Then, the combined weights are determined by the posterior information of all ensemble submodels, and the DXN emission concentration SEN model is constructed. The effectiveness of the proposed method is verified using the actual data of the MSWI process.

关键词:

Bayesian inference municipal solid waste incineration (MSWI) dioxin (DXN) emission modeling selective ensemble (SEN) binary tree

作者机构:

  • [ 1 ] [Xu, Chaofan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xia, Heng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Yu, Wen]Natl Polytech Inst, CINVESTAV IPN, Dept Control Automat, Mexico City 07360, DF, Mexico

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

ISSN: 0018-9456

年份: 2023

卷: 72

5 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:304/4973941
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司