• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Wenjian (Wang, Wenjian.) | Duan, Lijuan (Duan, Lijuan.) (学者:段立娟) | Wang, Yuxi (Wang, Yuxi.) | Fan, Junsong (Fan, Junsong.) | Zhang, Zhaoxiang (Zhang, Zhaoxiang.)

收录:

EI Scopus SCIE

摘要:

Few-shot learning aims to recognize novel categories solely relying on a few labeled samples, with existing few-shot methods primarily focusing on the categories sampled from the same distribution. Nevertheless, this assumption cannot always be ensured, and the actual domain shift problem significantly reduces the performance of few-shot learning. To remedy this problem, we investigate an interesting and challenging cross-domain few-shot learning task, where the training and testing tasks employ different domains. Specifically, we propose aMeta-Memory scheme to bridge the domain gap between source and target domains, leveraging style-memory and content-memory components. The former stores intra-domain style information from source domain instances and provides a richer feature distribution. The latter stores semantic information through exploration of knowledge of different categories. Under the contrastive learning strategy, our model effectively alleviates the cross-domain problem in few-shot learning. Extensive experiments demonstrate that our proposed method achieves state-of-the-art performance on cross-domain few-shot semantic segmentation tasks on the COCO-20(i), PASCAL-5(i), FSS-1000, and SUIM datasets and positively affects few-shot classification tasks on Meta-Dataset.

关键词:

Memory few-shot learning cross-domain semantic segmentation

作者机构:

  • [ 1 ] [Wang, Wenjian]Beijing Univ Technol, Fac Informat Technol, Beijing 100021, Peoples R China
  • [ 2 ] [Duan, Lijuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100021, Peoples R China
  • [ 3 ] [Wang, Wenjian]Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 4 ] [Duan, Lijuan]Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Wenjian]Natl Engn Lab Key Technol Informat Secur Level Pr, Beijing 100124, Peoples R China
  • [ 6 ] [Duan, Lijuan]Natl Engn Lab Key Technol Informat Secur Level Pr, Beijing 100124, Peoples R China
  • [ 7 ] [Wang, Yuxi]Chinese Acad Sci, Hong Kong Inst Sci & Innovat, Ctr Artificial Intelligence & Robot, Hong Kong 999077, Peoples R China
  • [ 8 ] [Zhang, Zhaoxiang]Chinese Acad Sci, Hong Kong Inst Sci & Innovat, Ctr Artificial Intelligence & Robot, Hong Kong 999077, Peoples R China
  • [ 9 ] [Zhang, Zhaoxiang]Chinese Acad Sci CASIA, Inst Automat, Natl Lab Pattern Recognit NLPR, Beijing 100045, Peoples R China
  • [ 10 ] [Zhang, Zhaoxiang]Univ Chinese Acad Sci UCAS, Beijing 101408, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

ISSN: 0162-8828

年份: 2023

期: 12

卷: 45

页码: 15018-15035

2 3 . 6 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:382/4914316
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司