• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Yongping (Du, Yongping.) (学者:杜永萍) | Du, Xiaoyan (Du, Xiaoyan.) | Yao, Changqing (Yao, Changqing.)

收录:

EI Scopus

摘要:

With the growth of e-commerce systems, the recommendation technology has made great success, but there are still a number of challenges, including the problem of low quality and data sparseness. In order to improve the quality of the recommendation, we put the timing data and the user's register information into the traditional collaborative filtering recommendation algorithm separately. The two improved algorithms are proposed and they are the time context sensitive algorithm and the user characteristic information sensitive algorithm. The experimental results on the MovieLens data set and the t-test results show that these two improved algorithms enhance the recommending system performance significantly. The MAE value can reach 0.7649 and 0.7603 separately. ©, 2015, Binary Information Press. All right reserved.

关键词:

Algorithms Statistical tests Electronic commerce Recommender systems Commerce Collaborative filtering Information filtering

作者机构:

  • [ 1 ] [Du, Yongping]College of Computer Science, Beijing University of Technology, Beijing, China
  • [ 2 ] [Du, Xiaoyan]College of Computer Science, Beijing University of Technology, Beijing, China
  • [ 3 ] [Yao, Changqing]Institute of Scientific and Technical Information of China, Beijing, China

通讯作者信息:

  • 杜永萍

    [du, yongping]college of computer science, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

Journal of Computational Information Systems

ISSN: 1553-9105

年份: 2015

期: 3

卷: 11

页码: 831-839

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:1122/3926234
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司