• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Jiapu (Wang, Jiapu.) | Wang, Boyue (Wang, Boyue.) | Gao, Junbin (Gao, Junbin.) | Li, Xiaoyan (Li, Xiaoyan.) | Hu, Yongli (Hu, Yongli.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Conventional Knowledge Graph Completion (KGC) methods typically map entities and relations to a unified space through the shared mapping matrix, and then interact with entities and relations to infer the missing items in the knowledge graph. Although this shared mapping matrix considers the suitability of all triplets, it neglects the specificity of each triplet. To solve this problem, we dynamically learn one information distributor for each triplet to exchange its specific information. In this paper, we propose a novel Triplet Distributor Network (TDN) for the knowledge graph completion task. Specifically, we adaptively learn one Triplet Distributor (TD) for each triplet to assist the interaction between the entity and relation. Furthermore, on the basis of TD, we creatively design the information exchange layer to dynamically propagate the information of the entity and relation, thus mutually enhancing entity and relation representations. Except for several commonly-used knowledge graph datasets, we still implement the link prediction task on the social-relational and medical datasets to test the proposed method. Experimental results demonstrate that the proposed method performs better than existing state-of-the-art KGC methods. The source codes of this paper are available at https://github.com/TDN for Knowledge Graph Completion.git.

关键词:

Triplet distributor network knowledge graph embedding attention mechanism knowledge graph completion

作者机构:

  • [ 1 ] [Wang, Jiapu]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Boyue]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Xiaoyan]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 4 ] [Hu, Yongli]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Fac Informat Technol, Beijing Municipal Key Lab Multimedia & Intelligent, Beijing 100124, Peoples R China
  • [ 6 ] [Gao, Junbin]Univ Sydney, Business Sch, Discipline Business Analyt, Camperdown, NSW 42006, Australia

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

ISSN: 1041-4347

年份: 2023

期: 12

卷: 35

页码: 13002-13014

8 . 9 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:326/4954245
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司