• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Xiaotian (Ma, Xiaotian.) | Wang, Yipeng (Wang, Yipeng.) | Lai, Yingxu (Lai, Yingxu.) | Jia, Wenxu (Jia, Wenxu.) | Zhao, Zijian (Zhao, Zijian.) | He, Huijie (He, Huijie.) | Yin, Ruiping (Yin, Ruiping.) | Chen, Yige (Chen, Yige.)

收录:

EI Scopus SCIE

摘要:

The realization of Internet of Things (IoT) traffic classification is crucial to the management and monitoring of the IoT network. Performing IoT traffic classification under a few-shot scenario is vital due to extremely rapid growth in the number of IoT devices and necessity to save computational costs. In this paper, we propose MAFFIT, a multi-perspective feature approach to few-shot classification of IoT traffic. The purpose is to comprehensively consider the information of network traffic and to achieve accurate classification of IoT traffic using a limited number of samples. MAFFIT is based on our key observation that traffic behaviour and traffic composition are highly consistent across IoT traffic of the same class. For a flow, MAFFIT will first extract the packet length sequences and packet byte sequence, then encodes the features of the corresponding sequences using feature construction, and finally uses comparative learning to obtain the class of the flow without the additional cost of training a comparison model. We conduct extensive experiments on two real-world IoT traffic datasets, the results demonstrate that MAFFIT can achieve accurate IoT traffic classification using a limited number of flow samples and MAFFIT outperforms three existing network traffic classification methods.

关键词:

Quality of service Training Protocols network monitoring Behavioral sciences Learning systems Telecommunication traffic Feature extraction Telecommunication network management Internet of Things few-shot learning network traffic classification network management Monitoring Task analysis

作者机构:

  • [ 1 ] [Ma, Xiaotian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Yipeng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Lai, Yingxu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Jia, Wenxu]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Zhao, Zijian]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [He, Huijie]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Yin, Ruiping]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 8 ] [Chen, Yige]Wenzhou Univ, Coll Comp Sci & Artificial Intelligence, Wenzhou 325000, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING

ISSN: 2473-2400

年份: 2023

期: 4

卷: 7

页码: 2052-2066

4 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:520/4953578
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司