• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lin, Yijing (Lin, Yijing.) | Gao, Zhipeng (Gao, Zhipeng.) | Du, Hongyang (Du, Hongyang.) | Kang, Jiawen (Kang, Jiawen.) | Niyato, Dusit (Niyato, Dusit.) | Wang, Qian (Wang, Qian.) | Ruan, Jingqing (Ruan, Jingqing.) | Wan, Shaohua (Wan, Shaohua.)

收录:

EI Scopus SCIE

摘要:

Blockchain-based Federated Learning (FL) technology enables vehicles to make smart decisions, improving vehicular services and enhancing the driving experience through a secure and privacy-preserving manner in Intelligent Transportation Systems (ITS). Many existing works exploit two-layer blockchain-based FL frameworks consisting of a mainchain and subchains for data interactions among intelligent vehicles, which resolve the limited throughput issue of single blockchain-based vehicular networks. However, the existing two-layer frameworks still suffer from a) strong dependency on predetermined and fixed parameters of vehicular blockchains which limit blockchain throughput and reliability; and b) high communication costs incurred by interactions among intelligent vehicles between the mainchain and subchains. To address the above challenges, we first design an adaptive blockchain-enabled FL framework for ITS based on blockchain sharding to facilitate decentralized vehicular data flows among intelligent vehicles. A streamline-based shard transmission mechanism is proposed to ensure communication efficiency almost without compromising the FL accuracy. We further formulate the proposed framework and propose an adaptive sharding mechanism using Deep Reinforcement Learning to automate the selection of parameters of vehicular shards. Numerical results clearly show that the proposed framework and mechanisms achieve adaptive, communication-efficient, credible, and scalable data interactions among intelligent vehicles.

关键词:

reputation deep reinforcement learning federated learning Blockchain sharding

作者机构:

  • [ 1 ] [Lin, Yijing]Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
  • [ 2 ] [Gao, Zhipeng]Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
  • [ 3 ] [Du, Hongyang]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
  • [ 4 ] [Niyato, Dusit]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
  • [ 5 ] [Kang, Jiawen]Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
  • [ 6 ] [Wang, Qian]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 7 ] [Ruan, Jingqing]Chinese Acad Sci, Inst Automat, Beijing 100190, Peoples R China
  • [ 8 ] [Wan, Shaohua]Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen 518110, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON COMMUNICATIONS

ISSN: 0090-6778

年份: 2023

期: 10

卷: 71

页码: 5992-6004

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 49

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:340/4971699
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司