• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fang, Chao (Fang, Chao.) | Hu, Zhaoming (Hu, Zhaoming.) | Meng, Xiangheng (Meng, Xiangheng.) | Tu, Shanshan (Tu, Shanshan.) | Wang, Zhuwei (Wang, Zhuwei.) | Zeng, Deze (Zeng, Deze.) | Ni, Wei (Ni, Wei.) | Guo, Song (Guo, Song.) | Han, Zhu (Han, Zhu.)

收录:

EI Scopus SCIE

摘要:

With the proliferation of mobile devices (e.g., vehicles and smartphones), rich media content services from massive users lead to high network resource consumption and energy usage. How to effectively allocate heterogeneous network resources and achieve green content delivery is a major challenge to be addressed in urgency, especially when vehicular users are involved and the spatiotemporal distribution of the content requests can change drastically. In this article, we propose a new deep reinforcement learning (DRL)-aided task offloading and resource allocation scheme, named TORA-DRL, to minimize power consumption in cloud-edge cooperation environments, where in-network caching and request aggregation are incorporated to reduce replicated transmissions of network contents. Based on the history of content requests and available network resources in the system, TORA-DRL jointly optimizes the decisions about task offloading, as well as computing, caching and communication resource allocation, adapting to the changes in network states and user requirements. Simulation results demonstrate that the proposed TORA-DRL solution converges fast and has much higher energy efficiency than the existing popular cloud-edge cooperation schemes under different network environments.

关键词:

task offloading deep reinforcement learning energy efficiency Cloud-edge cooperation resource allocation

作者机构:

  • [ 1 ] [Fang, Chao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Hu, Zhaoming]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Meng, Xiangheng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Tu, Shanshan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Zhuwei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Fang, Chao]Purple Mt Labs, Nanjing 211111, Peoples R China
  • [ 7 ] [Zeng, Deze]China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
  • [ 8 ] [Ni, Wei]CSIRO, Data61, Marsfield, NSW 2122, Australia
  • [ 9 ] [Guo, Song]Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
  • [ 10 ] [Han, Zhu]Univ Houston, Dept Elect & Comp Engn, Houston, TX 77004 USA
  • [ 11 ] [Han, Zhu]Kyung Hee Univ, Dept Comp Sci & Engn, Seoul 446701, South Korea

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY

ISSN: 0018-9545

年份: 2023

期: 12

卷: 72

页码: 16195-16207

6 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 26

SCOPUS被引频次: 42

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:462/4953170
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司