• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Bin (Wu, Bin.) | Liu, Le (Liu, Le.) | Yang, Yanqing (Yang, Yanqing.) | Zheng, Kangfeng (Zheng, Kangfeng.) | Wang, Xiujuan (Wang, Xiujuan.)

收录:

EI SCIE

摘要:

The detection and removal of malicious social bots in social networks has become an area of interest in industry and academia. The widely used bot detection method based on machine learning leads to an imbalance in the number of samples in different categories. Classifier bias leads to a low detection rate of minority samples. Therefore, we propose an improved conditional generative adversarial network (improved CGAN) to extend imbalanced data sets before applying training classifiers to improve the detection accuracy of social bots. To generate an auxiliary condition, we propose a modified clustering algorithm, namely, the Gaussian kernel density peak clustering algorithm (GKDPCA), which avoids the generation of data-augmentation noise and eliminates imbalances between and within social bot class distributions. Furthermore, we improve the CGAN convergence judgment condition by introducing the Wasserstein distance with a gradient penalty, which addresses the model collapse and gradient disappearance in the traditional CGAN. Three common oversampling algorithms are compared in experiments. The effects of the imbalance degree and the expansion ratio of the original data on oversampling are studied, and the improved CGAN performs better than the others. Experimental results comparing with three common oversampling algorithms show that the improved CGAN achieves the higher evaluation scores in terms of F1-score, G-mean and AUC.

关键词:

conditional generative adversarial networks data augmentation imbalanced data Social bot detection supervised classification

作者机构:

  • [ 1 ] [Wu, Bin]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 2 ] [Liu, Le]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 3 ] [Yang, Yanqing]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 4 ] [Zheng, Kangfeng]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 5 ] [Wang, Xiujuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wu, Bin]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2020

卷: 8

页码: 36664-36680

3 . 9 0 0

JCR@2022

JCR分区:2

被引次数:

WoS核心集被引频次: 26

SCOPUS被引频次: 37

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:1413/3637865
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司