• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lu, Fei (Lu, Fei.) | Xue, Liugen (Xue, Liugen.) (学者:薛留根) | Wang, Zhaoliang (Wang, Zhaoliang.)

收录:

Scopus SCIE

摘要:

Multivariate longitudinal data is often encountered in the jobs of statisticians and practitioners. It is challenging to model the covariance matrix due to the complex structure of correlations among multiple responses. For this modeling task, several effective Cholesky decomposition based methods have been studied. However, direct interpretation of the covariation structure among multiple responses is still less well investigated to the best of our knowledge. In this paper, we propose a joint mean-variance correlation modeling method based on the triangular angles parameterization (TAP) for the correlation matrix of bivariate longitudinal data. The proposed unconstrained parameterization is able to automatically eliminate the positive definiteness constraint of the correlation matrix and leads to the aforementioned direct interpretation. Furthermore, the variance matrix is diagonal rather than block-diagonal, so the positive-definiteness constraint of this matrix can be easily satisfied. The entries of the proposed decomposition are modeled by regression models, and the maximum likelihood estimators of regression parameters are obtained. The resulting estimators are shown to be consistent and asymptotically normal. Simulations and a study of poplar growth illustrate that the proposed method performs well.

关键词:

Maximum likelihood estimation Triangular angles parameterization Correlation matrix Multivariate longitudinal data Cholesky decomposition

作者机构:

  • [ 1 ] [Lu, Fei]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Xue, Liugen]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Zhaoliang]Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China

通讯作者信息:

  • [Lu, Fei]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF THE KOREAN STATISTICAL SOCIETY

ISSN: 1226-3192

年份: 2020

期: 2

卷: 49

页码: 364-388

0 . 6 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:46

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:320/3911737
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司