• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Yanhong (Yang, Yanhong.) | Ma, Tengfei (Ma, Tengfei.) | Li, Haitao (Li, Haitao.) | Liu, Yiran (Liu, Yiran.) | Tang, Chenghong (Tang, Chenghong.) | Pei, Wei (Pei, Wei.)

收录:

EI Scopus

摘要:

Multi-energy microgrids (MEMG) play an important role in promoting carbon neutrality and achieving sustainable development. This study investigates an effective energy management strategy (EMS) for MEMG. First, an energy management system model that allows for intra-microgrid energy conversion is developed, and the corresponding Markov decision process (MDP) problem is formulated. Subsequently, an improved double deep Q network (iDDQN) algorithm is proposed to enhance the exploration ability by modifying the calculation of the Q value, and a prioritized experience replay (PER) is introduced into the iDDQN to improve the training speed and effectiveness. Finally, taking advantage of the federated learning (FL) and iDDQN algorithms, a federated iDDQN is proposed to design an MEMG energy management strategy to enable each microgrid to share its experiences in the form of local neural network (NN) parameters with the federation layer, thus ensuring the privacy and security of data. The simulation results validate the superior performance of the proposed energy management strategy in minimizing the economic costs of the MEMG while reducing CO2 emissions and protecting data privacy. © 2023

关键词:

Multilayer neural networks Energy management systems Privacy-preserving techniques Markov processes Energy management Carbon

作者机构:

  • [ 1 ] [Yang, Yanhong]Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing; 100190, China
  • [ 2 ] [Ma, Tengfei]Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing; 100190, China
  • [ 3 ] [Li, Haitao]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Liu, Yiran]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 5 ] [Tang, Chenghong]State Grid Electric Power Research Institute, Nanjing; 211100, China
  • [ 6 ] [Pei, Wei]Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing; 100190, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Global Energy Interconnection

ISSN: 2096-5117

年份: 2023

期: 6

卷: 6

页码: 689-699

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:679/5059645
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司