• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Si (Li, Si.)

收录:

EI Scopus

摘要:

Animal detection and recognition is a crucial task in computer vision. YOLOv5 has been widely used for animal identification in the past few years. However, it is still a challenging task due to the diverse array of animal types found in complex environments. In this paper, we introduce a new attention mechanism based on the CBAM attention mechanism to enhance the performance of the network model. Specifically, the attention mechanism enhances the interplay between globally pooled channel information, thereby bolstering the ability to detect and recognize animals with similar features in complex backgrounds. Experimental results on the Oxford-IIIT Pet validation dataset demonstrate the effectiveness of the proposed model's robustness and its ability to perform effectively in real-world scenarios. © 2024 SPIE.

关键词:

Deep learning Complex networks Animals Medical imaging

作者机构:

  • [ 1 ] [Li, Si]Faculty of Information Technology, Beijing University Of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0277-786X

年份: 2024

卷: 12984

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:307/4838179
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司