收录:
摘要:
Animal detection and recognition is a crucial task in computer vision. YOLOv5 has been widely used for animal identification in the past few years. However, it is still a challenging task due to the diverse array of animal types found in complex environments. In this paper, we introduce a new attention mechanism based on the CBAM attention mechanism to enhance the performance of the network model. Specifically, the attention mechanism enhances the interplay between globally pooled channel information, thereby bolstering the ability to detect and recognize animals with similar features in complex backgrounds. Experimental results on the Oxford-IIIT Pet validation dataset demonstrate the effectiveness of the proposed model's robustness and its ability to perform effectively in real-world scenarios. © 2024 SPIE.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
ISSN: 0277-786X
年份: 2024
卷: 12984
语种: 英文
归属院系: