• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Quan-Lin (Li, Quan-Lin.) | Ma, Yaqian (Ma, Yaqian.) | Ma, Jing-Yu (Ma, Jing-Yu.) | Chang, Yan-Xia (Chang, Yan-Xia.)

收录:

EI Scopus

摘要:

In this paper, we apply the information theory to provide an approximate expression of the steady-state probability distribution for blockchain systems. We achieve this goal by maximizing an entropy function subject to specific constraints. These constraints are based on some prior information, including the average numbers of transactions in the block and the transaction pool, respectively. Furthermore, we use some numerical experiments to analyze how the key factors in this approximate expression depend on the crucial parameters of the blockchain system. As a result, this approximate expression has important theoretical significance in promoting practical applications of blockchain technology. At the same time, not only do the method and results given in this paper provide a new line in the study of blockchain queueing systems, but they also provide the theoretical basis and technical support for how to apply the information theory to the investigation of blockchain queueing networks and stochastic models more broadly. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

关键词:

Probability distributions Blockchain Queueing theory Information theory Stochastic models Queueing networks Entropy Stochastic systems

作者机构:

  • [ 1 ] [Li, Quan-Lin]School of Economics and Management, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Ma, Yaqian]School of Economics and Management, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Ma, Jing-Yu]Business School, Xuzhou University of Technology, Xuzhou; 221018, China
  • [ 4 ] [Chang, Yan-Xia]School of Economics and Management, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 0302-9743

年份: 2024

卷: 14462 LNCS

页码: 443-454

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:517/4957710
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司