• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Hong-Jian (Li, Hong-Jian.) | Wu, Qiong (Wu, Qiong.) | Yue, Ming (Yue, Ming.) (学者:岳明) | Li, Yu-Qing (Li, Yu-Qing.) | Zhu, Rong-Chun (Zhu, Rong-Chun.) | Liang, Jing-Ming (Liang, Jing-Ming.) | Zhang, Jiu-Xing (Zhang, Jiu-Xing.)

收录:

CPCI-S EI Scopus SCIE CSCD

摘要:

In this current study, nanocrystalline Dy powders were prepared by melt-spinning and subsequent high-energy ball-milling. The effect of ball-milling time on the structure and magnetic properties of the powders was studied. The crystal structure and microstructure of the melt-spun ribbons and ball-milled powders were observed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Magnetic measurement of all samples was performed with vibrating sample magnetometer (VSM). XRD results indicate that the average crystal grain size of the powders decreases from 90.09 nm of the ribbons to 10.42 nm of the 4-h ball-milled powders. Further TEM observation shows that the grains are fine and uniform. The Neel temperature (T-N) decreases from 182 K of the ribbons to 172 K of the powders, while the Curie temperature (T-C) increases from 100 to 130 K, demonstrating that the grain size has substantial influence on the magnetic transition process. Moreover, at 60 K, as the ball-milling time increases, the coercivity of the powders increases first, peaking at 0.48 T for 2-h milling, then drops again, while the remanence of the powders decreases monotonically. As a result, the powders milled for 2 h exhibit an optimal maximum energy product of 64.0 kJ center dot m(-3), demonstrating the good potential of these powders as a permanent magnet at low temperatures.

关键词:

Magnetic properties Dysprosium Nanocrystalline Low temperature

作者机构:

  • [ 1 ] [Li, Hong-Jian]Beijing Univ Technol, Minist Educ China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, Qiong]Beijing Univ Technol, Minist Educ China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Yue, Ming]Beijing Univ Technol, Minist Educ China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Yu-Qing]Beijing Univ Technol, Minist Educ China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Zhu, Rong-Chun]Beijing Univ Technol, Minist Educ China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 6 ] [Liang, Jing-Ming]Beijing Univ Technol, Minist Educ China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Jiu-Xing]Beijing Univ Technol, Minist Educ China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 岳明

    [Yue, Ming]Beijing Univ Technol, Minist Educ China, Key Lab Adv Funct Mat, Coll Mat Sci & Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

RARE METALS

ISSN: 1001-0521

年份: 2020

期: 1

卷: 39

页码: 28-35

8 . 8 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:169

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:658/3901981
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司