• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Hua, Qiang (Hua, Qiang.) | Sun, Ao (Sun, Ao.) | Liu, Yu-Chen (Liu, Yu-Chen.) | Zhang, Feng (Zhang, Feng.) | Dong, Chun-Ru (Dong, Chun-Ru.) | Xu, Da-Chuan (Xu, Da-Chuan.)

收录:

EI Scopus

摘要:

Person search is a challenging computer vision task that aims to simultaneously locate and identify a query person from panoramic images. To address the issue of scene similarity and its impact on search accuracy and efficiency, we propose a query based gallery selector module that employs cosine similarity to calculate the similarity between candidate images in the gallery and the query persons feature embedding, then selects and reorders images in the gallery based on their similarity to the query person, thus improving the accuracy and efficiency of searching. Furthermore, we introduce a mask-aware mechanism that improves the localization loss function for predicted bounding boxes. During training, the network is guided to increase its robustness in occluded scenarios. Experimental results on public person search datasets PRW and CUHK-SYSU demonstrate the effectiveness of our proposed method. © 2024, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

关键词:

Efficiency Computer vision Image enhancement

作者机构:

  • [ 1 ] [Hua, Qiang]College of Mathematics and Information Science, Hebei University, Baoding; 071002, China
  • [ 2 ] [Sun, Ao]College of Mathematics and Information Science, Hebei University, Baoding; 071002, China
  • [ 3 ] [Liu, Yu-Chen]College of Mathematics and Information Science, Hebei University, Baoding; 071002, China
  • [ 4 ] [Zhang, Feng]College of Mathematics and Information Science, Hebei University, Baoding; 071002, China
  • [ 5 ] [Dong, Chun-Ru]College of Mathematics and Information Science, Hebei University, Baoding; 071002, China
  • [ 6 ] [Xu, Da-Chuan]Beijing Institute for Scientific and Engineering Computing, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1876-1100

年份: 2024

卷: 1112 LNEE

页码: 249-259

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:563/5061006
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司