• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jiale (Li, Jiale.) | Yan, Aijun (Yan, Aijun.) | Tang, Jian (Tang, Jian.) (学者:汤健)

收录:

CPCI-S EI

摘要:

To predict the oxygen content in flue gas quickly and accurately during the municipal solid waste incineration (MSWI), the dynamic pruning strategy based on mutual information (MI) is used to build a learner model of deep stochastic configuration network (DSCN) in this paper. This learning model consists of two parts. One is to select the characteristic variables of the oxygen content in flue gas through the improved sailfish optimizer (SFO) with t-distribution. The other is to use MI to prune hidden nodes dynamically in a layer-by-layer manner during the training of DSCN, and then obtain a prediction model of the oxygen content in flue gas. The experimental results show that the improved SFO can select the optimal characteristic variables, MI can effectively reduce the complexity of the DSCN after pruning and achieve the rapid and accurate prediction of oxygen content in flue gas, which lays a foundation for timely optimization and adjustment of incineration conditions.

关键词:

t-distribution sailfish optimizer deep stochastic configuration network oxygen content in flue gas prune mutual information

作者机构:

  • [ 1 ] [Li, Jiale]Beijing Univ Technol, Fac Infonnat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Yan, Aijun]Beijing Univ Technol, Fac Infonnat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Tang, Jian]Beijing Univ Technol, Fac Infonnat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Jiale]Minist Educ, Engn Res Ctr Digital Cornnnin, Beijing 100124, Peoples R China
  • [ 5 ] [Yan, Aijun]Minist Educ, Engn Res Ctr Digital Cornnnin, Beijing 100124, Peoples R China
  • [ 6 ] [Yan, Aijun]Beijing Lab Urban Mass Transit, Beijing 100124, Peoples R China
  • [ 7 ] [Li, Jiale]Beijing Univ Technol, Beijing, Peoples R China
  • [ 8 ] [Yan, Aijun]Beijing Univ Technol, Beijing, Peoples R China
  • [ 9 ] [Tang, Jian]Beijing Univ Technol, Beijing, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC

ISSN: 1948-9439

年份: 2023

页码: 349-354

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:634/4959214
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司