• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tian, Hao (Tian, Hao.) | Tang, Jian (Tang, Jian.) | Pan, Xiaotong (Pan, Xiaotong.) | Xia, Heng (Xia, Heng.) | Wang, Tianzheng (Wang, Tianzheng.) | Wang, Zixuan (Wang, Zixuan.)

收录:

CPCI-S EI

摘要:

The combustion stability of solid waste in the incinerator determines the operating efficiency and pollutant emission concentration of the municipal solid waste incineration (MSWI) process. At present, domain experts identify the combustion state and manually control the MSWI process has the problem of unstable identification results and low intelligence. A combustion state recognition method for the MSWI process based on VGG19 depth feature migration is proposed to address the abovementioned problems. First, the original flame image is enhanced by rotation, adding noise, and other data enhancement methods to expand the size of labeling samples to overcome the high cost of manual labeling. Second, the VGG19 model based on ImageNet pre-training is used as the base model, and the output of the last layer of the middle layer is used as model the output to realize feature transfer learning by enhancing the flame image dataset and fine-tuning the model parameters. Finally, the flame feature extracted by VGG19 is used as the input of the improved cascade forest to build the combustion slate recognition model. The experimental results show that the recognition rate is 99.72%, which proves the effectiveness of the method.

关键词:

non-generation data enhancement VGGI9 network incineration states recognition deep forest municipal solid waste incineration

作者机构:

  • [ 1 ] [Tian, Hao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Tang, Jian]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Pan, Xiaotong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Xia, Heng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Wang, Tianzheng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 6 ] [Wang, Zixuan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC

ISSN: 1948-9439

年份: 2023

页码: 337-342

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:541/4953516
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司