• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shi, Yunhui (Shi, Yunhui.) (学者:施云惠) | Dong, Chao (Dong, Chao.) | Wang, Jin (Wang, Jin.)

收录:

CPCI-S EI

摘要:

Point cloud upsampling is used to densify the sparse set of points collected by 3D sensors, which is widely used in the field of robotics. In this paper, a two-stage method is used to generate upsampling point cloud. In the first stage, the rough upsampling point cloud is generated, and in the second stage, the rough point cloud is refined to obtain high-quality point cloud. The generation of high quality point cloud heavily relies on feature extractors. In the first stage, we introduce a transformer model to improve the feature extraction effect, which helps to fully extract the features of different location points. A Refinement Unit is proposed in the second stage to improve the rough upsampling point cloud generated in the first stage. The Refinement Unit is based on another transformer model in which the relative position coding function improves the coordinates of the deviation points generated in the first stage. We evaluate our approach on synthetic data sets. Experimental results show that the performance of this method is better than other methods.

关键词:

point cloud upsampling deep learning transformer

作者机构:

  • [ 1 ] [Shi, Yunhui]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Dong, Chao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Wang, Jin]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC

ISSN: 1948-9439

年份: 2023

页码: 1152-1157

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:565/4966544
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司