• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Shuyi (Li, Shuyi.) | Zhang, Bob (Zhang, Bob.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳) | Ma, Ruijun (Ma, Ruijun.) | Ning, Xin (Ning, Xin.)

收录:

EI Scopus SCIE

摘要:

Due to their high reliability, security, and anti-counterfeiting, finger-based biometrics (such as finger vein and finger knuckle print) have recently received considerable attention. Despite recent advances in finger-based biometrics, most of these approaches leverage much prior information and are non-robust for different modalities or different scenarios. To address this problem, we propose a structured Robust and Sparse Least Square Regression (RSLSR) framework to adaptively learn discriminative features for personal identification. To achieve the powerful representation capacity of the input data, RSLSR synchronously integrates robust projection learning, noise decomposition, and discriminant sparse representation into a unified learning framework. Specifically, RSLSR jointly learns the most discriminative information from the original pixels of the finger images by introducing the l(2,1) norm. A sparse transformation matrix and reconstruction error are simultaneously enforced to enhance its robustness to noise, thus making RSLSR adaptable to multi-scenarios. Extensive experiments on five contact-based and contactless-based finger databases demonstrate the clear superiority of the proposed RSLSR in terms of recognition accuracy and computational efficiency.

关键词:

Feature extraction Biometrics (access control) sparse transformation matrix least square regression (LSR) Representation learning projection learning Matrix converters Sparse matrices Matrix decomposition Finger-based biometrics Image recognition

作者机构:

  • [ 1 ] [Li, Shuyi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Bob]Univ Macau, Dept Comp & Informat Sci, PAMI Res Grp, Taipa, Macau, Peoples R China
  • [ 4 ] [Ma, Ruijun]South China Agr Univ, Coll Engn, Guangzhou 510642, Peoples R China
  • [ 5 ] [Ning, Xin]Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China
  • [ 6 ] [Ning, Xin]Wave Grp, Cognit Comp Technol Joint Lab, Beijing 102208, Peoples R China

通讯作者信息:

  • Univ Macau, Dept Comp & Informat Sci, PAMI Res Grp, Taipa, Macau, Peoples R China;;[Ning, Xin]Chinese Acad Sci, Inst Semicond, Beijing 100083, Peoples R China;;

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

ISSN: 1556-6013

年份: 2024

卷: 19

页码: 2709-2719

6 . 8 0 0

JCR@2022

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:572/4959691
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司